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11.1 Normed Vector Spaces 

We will start with some definitions and results from the theory of normed vector 
spaces which will be needed in this chapter (see more details in Chapter 10). 

1. Euclidian vector space n  The n-dimensional Euclidian vector space consists of all points 
( ){ }n

1 2 n kx x ,x ,...,x x= = ∈

for which the following operations are defined: 

Scalar product ( ) 1 1 2 2 n nx, y x y x y ... x y= + + + nx, y∈

Norm ( ) 2 2 2
1 2 nx x,x x x ... x= = + + +

Distance ( )x, y x yρ = −

Convergence kk
lim x x
→∞

=  if kk
lim x x 0
→∞

− =  

n  is a complete vector space (Banach space) relative to defined norm x . 

2. Vector space ( )C G Vector space ( )C G  consists of all real valued continuous functions defined on

the closed domain nG ⊂ : 

( ) ( ){ }nC G f x : D continuous= ⊂ →

 Norm    ( )C x G
f max f x

∈
=

Convergence   kk
lim f f
→∞

=  if k Ck
lim f f 0
→∞

− =

( )C G is a complete vector space (Banach space) relative to defined norm
C

f . 

3. Vector space ( )2L G The space of functions integrable according to Lebesgue (see Section 3.1) 

( ) ( ) ( ) 2n
2

G

L G f x : G f x dx
  = ⊂ → < ∞ 
  

∫

Inner product ( ) ( ) ( )
G

f ,g f x g x dx= ∫

Norm 
2

f ( ) ( ) 2

G

f , f f x dx= = ∫
The following property follows from the definition of the Lebesgue integral 

( ) ( )dxxfdxxf
GG
∫∫ ≤

( )2L G is a complete normed vectors spaces (Banach spaces) relative to 
2

f . 

4. Cauchy-Bunyakovsky-Schwarz Inequality (see also Theorem 10.1, p.257)

( ) 2 2
f ,g f g≤ ⋅ for all ( )2f ,g L G∈  

Proof: 
If ( )2f ,g L G∈ ,  then functions f , g  and any combination gf βα +  are 

also integrable and therefore belong to ( )GL2 .
Consider 

( )GLgf 2∈+ λ , R∈λ  for which we have 
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( ) dxgdxfg2dxfdxgf0
2

G

2

G

2

GG

2
∫∫∫∫ ++=+≤ λλλ

The right hand side is a quadratic function of λ .  Because this function is non-
negative, its discrimenant ( 2D b 4ac= − ) is non-positive  

2

2 24 fg dx 4 f dx g dx 0
G G G

     
   − ≤ ∫ ∫ ∫         

2
2 2

G G G

fg dx f dx g dx
     

     ≤
         

∫ ∫ ∫    

and because ( ) ∫∫∫ ≤≤=
GGG

dxgfdxgfdxgfg,f , 

( ) 2 2 2

2 2
f , g f g≤ ⋅

from which the claimed inequality yields 

( ) 2 2
f , g f g≤ ⋅

  ■ 

5. Minkowski Inequality (3rd property of the norm “Triangle Inequality”), (see Example 10.7 on p.257)

222
gfgf +≤+ for all ( )2f ,g L G∈  

Proof: 

Consider 2

2
gf + ( )gf,gf ++=

( ) ( ) ( ) ( )g,gf,gg,ff,f +++=

( ) ( ) 2

2

2

2
gf,gg,ff +++≤

2

222

2

2
ggf2f ++≤ from C-B inequality 

( )2
22

gf +=

Then extraction of the square root yields the claimed result.    ■ 

Note that the Minkowski inequality reduces to equality only if functions f  and 
g  are equal up to the scalar multiple, gf α= , R∈α  (why?). 
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11.2  Linear Operators  

Let M  and N  be two complete normed vectors spaces (Banach spaces, see 
Ch.10) with norms 

M
⋅  and 

N
⋅ , correspondingly.  We define an operator L  as 

a map (function) from the vector space M  to  the vector space N : 

NM:L →

Introduce the following definitions concerning the operators in the vector 
spaces: 

Operator NM:L →  is linear if ( ) LgLfgfL βαβα +=+
for all Mg,f ∈  and all R, ∈βα

Operator NM:L →  is continuous if from  ff k →  in M
follows LfLf k → in N
(the image of the convergent sequence 
in M  is a convergent sequence in N ) 

Operator NM:L →  is bounded if there exists 0c >  such that  

MN
fcLf ≤   for all Mf ∈

The norm of operator NM:L →  can be defined as the greatest lower bound 
of such constant c  

M

N

0f f

Lf
supL
≠

=

Theorem 7.1   If linear operator NM:L →  is bounded then it is continuous 

Proof: 
Let operator NM:L →  be bounded, then according to the definition there 
exists 0c >  such that 

MN
fcLf ≤  . 

Let ff k →  in M .  That means that 0fflim
Mkk
=−

∞→
.  From the definition of 

the limit it follows that for any 0>ε  there exists k Nε ∈  such that 
ε<−

Mk ff  for all k kε≥ . 

To prove the theorem, show now that LfLf k →  in N  or that 
0LfLflim

Nkk
=−

∞→
.  We have to show that for any 0>Ε  there exists NK ∈Ε

such that Ε<−
Nk LfLf  for all ΕKk ≥ . 

Choose 
c
Εε = , then 

( ) ΕΕ
=⋅<−≤−=−

c
cffcffLLfLf

MkNkNk  for all ck k KΕ Ε≥ = .  ■ 

Remark: It is also true that if linear operator is continuous then it is bounded 
(prove as an exercise).  Therefore, for linear operators, properties continuous 
and bounded are equivalent. 



Chapter 7   INTEGRAL EQUATIONS                          
 

Definition Linear operator L : M N→  satisfies the Lipschitz condition 
with constant k 0≥  if 

 
   Lf Lg k f g− ≤ −   for all f ,g M∈  
 

Obviously that if linear operator satisfies the Lipschitz 
condition (it is called a Lipschitz operator) then it is bounded 
(take vector g 0= ) and, therefore, it is continuous. 

 
Definition Linear operator L : M N→  is a contraction if it satisfies the 

Lipschitz condition with constant k 1< . 
 
 
 
 
 
 
 
 
 

 
 

Let S  be a closed subset of Banach space M , S M⊂ , and 
let L : S S→  be an operator.  

 
Definition  Solution of operator equation f Lf=  is called a  

fixed point of operator L . 
 
 

 
 
 
 

 
Definition Successive approximations is a sequence { }0 1 2f , f , f ,...  

constructed in the following way: 
 
 0f S∈   is a starting point 
 
 1 0f Lf=  
 2 1f Lf=  
  
 n 1 nf Lf+ =  
  

 
Schematic visualization of successive approximations: 

 
 
 
 
 
 
 
 
 
 
 

distance between images
 becomes smaller



Chapter 7   INTEGRAL EQUATIONS                          
 

 
Successive approximations can be used for solution of operator equation     

f Lf=  
For example, in this case, the successive approximations converge to the fixed 
point: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
But they do not always converge to the fixed point of operator equation. This 
example shows that even the choice of the starting point close to the fixed point 
yields the divergent sequence of successive approximations (apparently they are 
not very successive  ): 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The following theorem establishes the sufficient condition for convergence of 
successive approximations to the fixed point of operator equation. 
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Theorem  (Banach Fixed Point Theorem, 1922) 
 

Let S  be a non-empty closed subset of Banach space M , 
S M⊂ , S ≠ ∅ .  
And let L : S S→  be a contraction operator with constant 
k 1< . 
Then the sequence of successive approximations 
{ }n n n 1 0f   f Lf , f S−= ∈  converges to the unique fixed point 

f S , f=Lf∈  for any starting point 0f S∈   
   nf   f→  
and the following estimate is valid 

n

n n n 1 0 1
1 kf f f f f f
k 1 k+− ≤ − ≤ −

−
 

        Proof: 
 
        • Using mathematical induction, show that   n

n n 1 0 1f f k f f+− ≤ −  (☼) 
 
        Verify for  n 0=   0

0 1 0 1 0 1f f k f f f f− = − = −     true  
 
Assume for n :   n

n n 1 0 1f f k f f+− ≤ −    
 
Show for  n 1+ :  n 1

n 1 n 2 0 1f f k f f+
+ +− ≤ −  

 
      
Indeed,     n 1 n 2f f+ +−  n n 1Lf Lf += −      definition of s.a. 

         n n 1k f f +≤ −  Lipschitz condition 
n

0 1k k f f≤ ⋅ −  assumption 
n 1

0 1k f f+= −  
 
        • Show that { }nf  is a Cauchy sequence, i.e. m nn,m

lim f f 0
→∞

− =  

 
        Consider 
 
        m n m m m n n nf f f Lf Lf Lf Lf f− = − + − + −       (add and subtract) 
 
        Apply Minkowski inequality twice: 
 
        m nf f−  m m m n n nf Lf Lf Lf Lf f≤ − + − + −  
 
           m m m n n nf Lf k f f Lf f≤ − + − + −   Lipschitz condition 
 

           m m n nf Lf Lf f
1 k

− + −
≤

−
 

           m m 1 n n 1f f f f
1 k

+ +− + −
≤

−
     definition of s.a. 

           
m n

0 1 0 1k f f k f f
1 k

− + −
≤

−
    equation (☼) 

 

           
m n

0 1
k k f f

1 k
+

= −
−

 0→  when m,n →∞    
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• Because vector space M  is complete, Cauchy sequence { }nf  converges to 
some  f M∈ .  And because nf S∈  and set S  is closed (includes all limiting 
points), f S∈ .  Therefore in a limit, equation of successive approximations  
   n 1 nf Lf+ =  ⇒  n 1 nn n

lim f lim Lf+→∞ →∞
=  

       ( )n 1 nn n
lim f L lim f+→∞ →∞

=   

converges to 
       f Lf=  
And therefore, f S∈  is a fixed point. 
 
 
• (Uniqueness)   Let f ,g S∈  be two fixed points of operator L : 
   f Lf=  
   g Lg=  
Then from 
   f g Lf Lg k f g− = − ≤ −  
yields 
   ( )1 k f g 0− − ≤  
Because 1 k 0− >  
   f g 0− ≤   
That is possible only if  

f g 0− =  
Therefore,    f g=  
So the fixed point is unique.             ■ 
 
 
 
 
 
 
 
Hugo Steinhaus, the colleague and friend of Stefan Banach, formulated the fixed 
point theorem in the following way: 
 
                    “hedgehog cannot be combed”   
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7.3 Integral Operator   
        Consider an operator called an integral operator given by the equation 
 
            ( ) ( )∫=

G

dyyfy,xKKf  nRGx ⊂∈  

         
        Obviously, that integral operator is linear. 
 

Function ( )y,xK  is called a kernel of the integral operator.  We will consider 
kernels  ( ) ( )GGLy,xK 2 ×∈ , therefore 

    ( ) ∞<∫ ∫ dydxy,xK
G G

2  

In a case of RG ⊂ , the domain ( )b,aG = , where b,a  can be finite or infinite. 
 

 
Theorem 7.2 Let K  be the integral operator with a kernel ( )y,xK  

continuous in [ ] [ ]b,ab,a × .  Then operator K  is bounded, 
and, therefore, continuous.  Moreover: 

 
1) ( ) [ ]b,aCb,aL:K 2 →    

2C
fabMKf −≤  for ( )b,aLf 2∈  

 
 
2) ( ) ( )b,aLb,aL:K 22 →   ( )

22
fabMKf −≤  for ( )b,aLf 2∈  

 
 
3) [ ] [ ]b,aCb,aC:K →    ( )

CC
fabMKf −≤  for [ ]b,aCf ∈  

 
 

Proof: 
Since ( )y,xK is continuous in the closed domain [ ] [ ]b,ab,a × , there exists 

0M >  such that 
[ ]

( )y,xKmaxM
b,ay,x ∈

= . 

 
1)  Let ( )b,aLf 2∈ .  Then because function ( )y,xK  is continuous in 
[ ] [ ]b,ab,a × , the function ( )( )xKf  is continuous in [ ]b,a , and, therefore 

( ) [ ]b,aCb,aL:K 2 → .  Consider 
 

C
Kf  

[ ]
( )( )

x a ,b
max  Kf x
∈

=     definition of norm in [ ]C a,b  

[ ]
( ) ( )

b

x a,b
a

max  K x, y f y dy
∈

= ∫   definition of integral operator 

[ ]
( ) ( )( )

x a ,b
max  K x, y , f y
∈

=    inner product in ( )2L a,b  

 
  

[ ] 2 2x a ,b
max  K f
∈

≤          Cauchy-Bunyakowski inequality 

  
[ ]

( )
1 2b

2

2 x a ,b
a

f max  K x, y dy
∈

 
≤  

 
∫   definition of norm in ( )2L a,b  

  
[ ]

1 2b
2

2 x a ,b
a

f max  M dy
∈

 
≤  

 
∫    replace by 

[ ]
( )y,xKmaxM

b,ay,x ∈
=  

  
  

2
fabM −=      calculating definite integral 
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2)  
2

Kf  ( )( ) ( )( )( ) 21xKf,xKf=   definition of norm in ( )2L a,b  
 

  ( )( )
21b

a

2 dxxKf 







= ∫     inner product in ( )2L a,b   

 

  ( ) ( )
21

b

a

2b

a

dxdyyfy,xK











= ∫ ∫   definition of integral operator 

 

  
21b

a

2

2

2

2
dxfK 







≤ ∫     Cauchy-Bunyakowski inequality 

 

  ( )
21

b

a

b

a

2

2
dxdyy,xKf



















= ∫ ∫  factoring 

2
f  

 

  
21

b

a

b

a

2
2

dxdyMf



















≤ ∫ ∫    replace by 

[ ]
( )y,xKmaxM

b,ay,x ∈
=  

 

  
21

b

a

b

a
2

dxdyfM



















≤ ∫ ∫    calculating definite integral 

 
  ( )abfM

2
−=  

 
3)  

C
Kf  

[ ]
( )( )

x a ,b
max  Kf x
∈

=   definition of norm in [ ]C a,b  

[ ]
( ) ( )

b

x a,b
a

max  K x, y f y dy
∈

= ∫   definition of integral operator 

[ ]
( ) ( )

b

x a,b
a

max K x, y f y dy
∈

≤ ∫       

  
[ ]

( )
b

x a,b
a

max M f y dy
∈

≤ ∫     replace by 
[ ]

( )y,xKmaxM
b,ay,x ∈

=  

  ( )
b

a

M f y dy= ∫      does not depend on x 

  
[ ]

( )
b

y a ,b
a

M max f y dy
∈

≤ ∫  

  
b

C
a

M f dy≤ ∫      definition of norm in [ ]C a,b  

  
b

C
a

M f dy≤ ∫  

 
  ( ) C

M b a f= −      calculating definite integral  
      

                  ■ 
 
 
 



Chapter 7   INTEGRAL EQUATIONS                          
 
7.4  Integral Equations   
        Integral equations are equations in which the unknown function is under the  

integral sign.  The typical integral equations for unknown function ( )xu , 
nx G∈ ⊂  (in this chapter , we consider ( )x a,b∈ ⊂ ) include integral term 

in the form of integral operator with the kernel ( )y,xK  

    ( ) ( )
( )b x

a

Ku K x, y u y dy= ∫  

 
The main types of integral equations are the following: 
 
 

I  Fredholm integral equation 1)  Fredholm’s integral equation of the 1st kind: 
 
 

        ( ) ( ) ( )
b

a

K x, y u y dy f x=∫       fKu =   non-homogeneous eqn 

        ( ) ( )
b

a

K x, y u y dy 0=∫        0Ku =   homogeneous eqn 

 
 

2)  Fredholm’s integral equation of the 2nd kind:  C∈λ  is a parameter 
 
 

        ( ) ( ) ( ) ( )
b

a

u x K x, y u y dy f xλ= +∫     fKuu += λ  non-homogeneous eqn 

        ( ) ( ) ( )
b

a

u x K x, y u y dyλ= ∫      Kuu λ=   homogeneous eqn 

 
 
II   Volterra integral equation 1)  Volterra’s integral equation of the 1st kind: 
 
 

        ( ) ( ) ( )xfdyyuy,xK
x

0

=∫         

 
 
2)  Volterra’s integral equation of the 2nd  kind: 

 
 

        ( ) ( ) ( ) ( )xfdyyuy,xKxu
x

0

+= ∫λ    

 
 

Note that Volterra’s equations can be viewed as a special case of Fredholm’s 
equations with ( ) 0y,xK =  for ayx0 <<<   (it is called a Volterra kernel). 

 
 
          
      
                    
      
   
 
 

a

a0 x

y
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III Integro-Differential Equation includes an unknown function under the integral sign and also any derivative of  

the unknown function.  For example: 

( ) ( ) ( ) ( )xfdyyuy,xKxu
dx
du

G

++= ∫    

An important representation of the integro-differential equation is a Radiative 
Transfer Equation describing energy transport in the absorbing, emitting and 
scattering media (analogous equations appear in the theory of neutron transport). 
 

  
Solution of integral equation  is any function ( )xu satisfying this equation:  
 
            fKuu += λ   non-homogeneous equation 
 
            Kuu λ=   homogeneous equation 
 

The value of the parameter C∈λ  for which the homogeneous integral equation 
has a non-trivial solution 2Lu∈  which is called an eigenvalue of the kernel 
( )y,xK , and the corresponding solution is called an eigenfunction of this 

kernel. 
 
Eigenvalue problem We will distinguish eigenvalue problems for the integral kernel (integral 

equation): 
Kuu λ=  

 
        and for the integral operator 

            u1Ku
λ

=  

The eigenvalues of the integral operator are recipical to eigenvalues of the 
integral kernel, and eigenfunctions are the same in both cases. 

 
 
Existence of the solution of Fredholm’s integral equation 
 
        Consider Fredholm’s integral equation of the 2nd kind: 
            fKuu += λ              (◊) 

with bounded integral operator K  which also satisfies the Lipschitz condition:  
            1 2 1 2Ku Ku k u u− ≤ − ,  k 0≥  
        Rewrite integral equation in the form 
            u Tu=              (◊◊) 
        where operator T  is defined by 
            Tu Ku fλ= +  

Note that operator T  is not linear.  Obviously, if u  is a fixed point of operator 
equation (◊◊), then u  is a solution of integral equation (◊). 
Consider  

            1 2Tu Tu−  ( )1 2Ku f Ku fλ λ= + − +  

               1 2Ku Kuλ λ= −  
               ( )1 2K u uλ= −  
               1 2k u uλ≤ −  

If k 1λ < , then operator  T is a contraction and according to Banach fixed point 
theorem , there exist a unique fixed point of equation (◊◊) .  This unique fixed 
point is also a solution of Fredholm’s equation  (◊).  Therefore, the following 
conclusion can be made: Fredholm’s integral equation of the 2nd kind with 
bounded kernel has a unique solution for sufficiently small λ , in fact 1 kλ < . 
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7.5  Solution Methods for Integral Equations 
 
1.   The Method of Successive Approximations for Fredholm’s Integral Equation  
 
        For the integral equation  
 
            fKuu += λ  
 
        the following iterations of the method of successive approximations are set by: 
 
            ( ) ( )xfxu0 =   
 
            ( ) fKuxu 1nn += −λ  ,...2,1n =  
 
 
 

        Lemma 7.1  ( ) ∑
=

=
n

0k

kk
n fKxu λ   where ( )( )

times k

k KKKK =  

 
         
        Proof by mathematical induction (assume that the formula for n is true): 
    
        0n =   ( )xu0  ( )xffK 00 == λ     confirmed 
 
 
        1nn +=  ( )n 1u x+  fKun += λ      by definition 
 

             ffKK
n

0k

kk +







= ∑

=

λλ   by assumption 

             
n

k 1 k 1

k 0
f K fλ + +

=

= +∑    linearity  

             ∑
+

=

+=
1n

1p

pp fKf λ    change of index 1kp +=  

             ∑
+

=

+=
1n

1p

pp00 fKfK λλ  

             ∑
+

=

=
1n

0p

pp fKλ  

             ∑
+

=

=
1n

0k

kk fKλ     change of index kp =   ■ 

 
 

Neumann Series     ∑
∞

=0k

kk fKλ   is called to be the Neumann Series 

 
Estimation of iterations   

C

n fK    ( )
C

1n fKK −=  

 
            ( )

C

1n fKabM −−≤    Theorem 7.2 (3) 

            ( )
C

2n22 fKabM −−≤   

            … 
            ( )

C
nn fabM −≤  
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C0k

kk fK∑
∞

=

λ  k k

Ck 0
K fλ

∞

=

≤ ∑        Cauchy-Bunyakovsky inequality 

( )∑
∞

=

−≤
0k

kkk

C
abMf λ   Theorem 7.2 3) 

            ( )[ ]∑
∞

=

−=
0k

k

C
abMf λ   geometric series 

                   converges if ( )abM
1
−

<λ  

            ( )abM1

f
C

−−
=

λ
          

 

Therefore, the Neumann series ∑
∞

=0k

kk fKλ  converges for ( )abM
1
−

<λ .  

Denote the sum of the Neumann series as a function ( )xu : 

( ) ∑
∞

=

=
0k

kk fKxu λ  

Show that this function satisfies the integral equation fKuu += λ .  Consider 
iterations  

( ) fKuxu 1nn += −λ  
then 
( )xu  ( )xulim nn ∞→

=   

( ) fxulimK 1nn
+= −∞→

λ   

( ) ( ) fdyyulimy,xK
b

a
1nn

+= ∫ −∞→
λ  

( ) ( ) fdyyuy,xK
b

a

+= ∫λ  

        And , recalling estimation, ( ) ( )abM1

f
xu C

C −−
≤

λ
 

 
show that this solution is unique. For that, it is enough to show that the 
homogeneous equation Kuu λ= has only a trivial solution.  Indeed, if 

00 Kuu λ= , then [ ]b,aCu0 ∈  and , according to Theorem 6.2 3), 
( )

C0C0 uabMu −≤ λ , then 

( )[ ] 0uabM1
C0 ≤−− λ  

Because ( )abM
1
−

<λ , ( )[ ] 0abM1 >−− λ  and, therefore, 0u
C0 = .  That 

yields, that ( ) 0xu =  for all [ ]b,ax∈ .  So, only the trivial solution exists for the 
homogeneous equation. 
 
The non-homogeneous equation fKuu += λ can be rewritten in the form 
( ) fuKI =− λ  
where I  is an identity operator 
Then solution of this equation can be treated as an inversion of the operator 

( ) fKIu 1−−= λ  

Therefore, if ( )abM
1
−

<λ , then there exists an inverse operator ( ) 1KI −− λ . 

 
The above mentioned results can be formulated in the following theorem: 
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Theorem 7.3 Fredholm’s integral equation  
fKuu += λ   

with ( )abM
1
−

<λ  and continuous kernel ( )y,xK  has a 

unique solution ( ) [ ]b,aCxu ∈   for any ( ) [ ]b,aCxf ∈ . 
This solution is given by a convergent Neumann series 

    ( ) ∑
∞

=

=
0k

kk fKxu λ  

and satisfies 

    ( ) ( )abM1

f
xu C

C −−
≤

λ
. 

If ( )abM
1
−

<λ , then there exists an inverse operator 

( ) 1KI −− λ . 
 
 

Conditions of Theorem 7.3 are only just sufficient conditions; if these conditions 
are not satisfied, solution of the integral equation still can exists and the 
Neumann series can be convergent. 
 
 
 
Example 7.1  Find the solution of the integral equation 

      ( ) ( )∫+=
1

0

x dyyu
e
1exu  

by the method of successive approximations and in the form 
of the Neumann series.  
 

        Identify:   ( ) 1y,xK =   ( ) xexf =  1ab =−  

           1M =    
e
1

=λ  

 

        Check condition: ( )abM
1
−

<λ  1
11

1
e
1

<
⋅

<  

 
        1) iterations: 
 
        ( )xu0  xe=  

        ( )xu1  ( )∫+=
1

0
0

x dyyu
e
1e  ∫+=

1

0

xx dye
e
1e  [ ]10xx e

e
1e +=  

e
11e x −+=  

        ( )xu2  ( )∫+=
1

0
1

x dyyu
e
1e  ∫ 






 −++=

1

0

xx dy
e
11e

e
1e  

2
x

e
11e −+=  

        … 

        ( )xun  ( )∫ −+=
1

0
1n

x dyyu
e
1e  

n
x

e
11e −+=  

 
        Then solution of the integral equation is a limit of iterations 

        ( )xu  ( )xulim nn ∞→
=  






 −+=

∞→ n
x

n e
11elim  1e x +=  

 
This result can be validated by a direct substitution into the given integral 
equation. 
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2) Neumann series: 
 

( ) ∑
∞

=

=
0k

kk fKxu λ  ( ) +++= fKfKxf 2211 λλ  

 
 
( )xf  xe=  

Kf   ∫=
1

0

x dye  1e −=  

        fK 2  ( )∫ −=
1

0

dy1e  1e −=  

        … 
        fK n  1e −=  
 
 
        Then the Neumann series is 
 

        ( )xu  ( ) ( ) ( )+−++−+−+= 1e
e
11e

e
11e

e
1e

n2
x  

 

          ( ) ( ) ( ) ( ) ( )x
2 n

1 1 1e e 1 e 1 e 1 e 1 e 1
e e e

= − − + − + − + − + + − +  

 

          ( ) ( )∑
∞

=

−+−−=
0n

n
x

e
11e1ee  

 

          ( )

e
11

1e1ee x

−

−
++−=  

 
          e1ee x ++−=  
 
          1e x +=  
 
 
        So, the Neumann series approach produces the same solution. 
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2.   The Method of Successive Substitutions for Fredholm’s Integral Equation (the Resolvent Method)  
 
 
Iterated kernel     Let integral operator K  has a continuous kernel ( )y,xK , then define: 
 

Repeated operator  ( ) ( )KKKKK 1n1nn −− ==   ,...3,2n =  
 

        It has a kernel  ( )y,xK n  ( ) ( ) ydy,yKy,xK 1n
G

′′′= −∫  

 

        Indeed,    ( ) ( )1K f x  ( )
( )

( )
1

G K x,y

K x, y f y dy= ∫   

   
             ( )( )xfK 2  ( )[ ]( )xKfK=  

( ) ( ) ( )∫ ∫ ′











′′=

G G

yddyyfy,yKy,xK   

                ( ) ( )

( )

( )

2

G G

K x,y

K x, y K y , y dy f y dy
 

′ ′ ′=  
 
∫ ∫  

             … 
 

        Kernel     ( )y,xK n  ( ) ( ) ydy,yKy,xK 1n
G

′′′= −∫  

                 ( ) ( ) ydy,yKy,xK
G

1n ′′′= ∫ −  

 
is called an iterated kernel.  Kernels ( )y,xK n  are continuous, and if domain 

( )b,aG = , then 

      ( ) ( ) 1nn
n abMy,xK −−≤  

 
Resolvent      Function defined by the infinite series 

              ( ) ( )∑
∞

=
+=

0k
1k

k y,xK,y,xR λλ  

        is called a resolvent. 
 
 
 

Theorem 7.4 Solution of integral equation fKuu += λ with continuous 

kernel ( )y,xK  is unique in [ ]b,aC  for ( )abM
1
−

<λ , and for 

any [ ]b,aCf ∈  is given by 
 

  ( ) ( ) ( ) ( )dyyf,y,xRxfxu
b

a
∫+= λλ  

 
 i.e. there exists inverse operator 

 ( ) RIKI 1 λλ +=− − ,     ( )abM
1
−

<λ  
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Example 7.2  Find solution of integral equation 

      ( ) ( )∫+=
1

0

dyyxyu
8
1x

6
23xu  

by the resolvent method . 
 

        Identify:   ( ) xyy,xK =   ( ) x
6
23xf =   1ab =−  

           1M =    
8
1

=λ  

 

        Check condition: ( )abM
1
−

<λ  1
11

1
8
1

<
⋅

<  

        Iterated kernels: 
 
        ( )y,xK1  xy=  

        ( )y,xK 2  ( ) ( )
1

1
0

K x, y K y , y dy′ ′ ′= ∫  yydyyx
1

0

′′′= ∫  =
1

0

3

3
yxy 







 ′
   

3
xy

=  

        ( )y,xK 3  ( ) ( )
1

2 2
0

K x, y K y , y dy′ ′ ′= ∫  yydy
3
yx1

0

′′
′

= ∫  =
1

0

3

3
y

3
xy








 ′
   

23
xy

=  

        … 
   

( )y,xK n  
1n3

xy
−

=  

 
        Resolvent: 

        ( )λ,y,xR  ( )∑
∞

=
+=

0k
1k

k y,xKλ  

           ...
3
xy

8
1...

3
xy

8
1

3
xy

8
1

3
xy

8
1xy

nn3322
++++++=  

           



 ++++++= ...

3
1

8
1...

3
1

8
1

3
1

8
1

3
1

8
11xy

nn3322
 

           

24
11

1xy
−

=  

           xy
23
24

=  

 
        Solution: 

        ( )xu   ( ) ( ) ( )dyyf,y,xRxf
b

a
∫+= λλ  

           ydy
6
23xy

23
24

8
1x

6
23 1

0
∫+=  

           dyyx
2
1x

6
23 1

0

2∫+=  

           
1

0

3

3
yx

2
1x

6
23









+=  

 
         x4=   
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3.   The Method of Successive Approximations for the Volterra Integral Equation of the 2nd kind 
 

Consider the Volterra integral equation of the 2nd kind  

( ) ( ) ( ) ( )
x

0

u x K x, y u y dy f xλ= +∫  

where ( )y,xK  is a continuous kernel, ( ) [ ] [ ]( )K x, y C a,b a,b∈ × . 
 
The method of successive approximation is defined by the following iterations: 
 

( )xu0  ( )xf=  

( )xun  ∑
=

=
n

0k

kn fKλ  fKu 1n += −λ  

 
 
Theorem 7.5  The Volterra integral equation of the 2nd kind 

    ( ) ( ) ( ) ( )
x

0

u x K x, y u y dy f xλ= +∫  

with continuous kernel ( )y,xK  and with any R∈λ  
 

has a unique solution ( ) [ ]a,0Cxu ∈  for any ( ) [ ]a,0Cxf ∈ .  
This solution is given by a uniformly convergent Neumann 
series 

( )xu ( )( )∑
∞

=

=
0k

kn xfKλ  

and its norm satisfies  
( ) Ma

CC
efxu λ≤  

 
 

Example 7.3  Find solution of integral equation 

      ( ) ( )∫+=
x

0

dyyu1xu  

by the method of successive approximations. 
 

        Identify:   ( ) 1y,xK =   ( ) 1xf =    
           1M =    1=λ  

 
 
       fK 0  ( )xf=  1=  

       fK 1  ( )( )( )dyyfKy,xK
x

0

0∫=  dy11
x

0
∫ ⋅=  [ ]x

0y=  x=  

       fK 2  ( )( )( )dyyfKy,xK
x

0

1∫=  ydy1
x

0
∫ ⋅=  

x

0

2

2
y









=  

2
x 2

=  

       fK 3  ( )( )( )dyyfKy,xK
x

0

2∫=  dy
2
y1

2x

0
∫ ⋅=  

x

0

3

3
y

2
1









=  

32
x 3

⋅
=  

       … 

       fK n  
!n

x n

=  

 

       Solution:  ( )xu  ( )( )∑
∞

=

=
0k

kn xfKλ   ∑
∞

=

=
0k

k

!k
x  xe=  



Chapter 7   INTEGRAL EQUATIONS                          
 
7.6  Connection between integral equations and initial and boundary value problems 

 
 

1.  Reduction of IVP to the Volterra integral equation 
 

 
       Example 7.4  Reduce IVP 
           0ux3u 2 =−′  ( ) 10u =  
           to the Volterra integral equation. 
 
       Integrate the differential equation from 0  to x : 
 

       ( ) ( )
x

2

0

u y 3y u y dy 0 ′ − = ∫  

       ( ) ( )
x x

2

0 0

u dy 3y u dy 0′ − =∫ ∫  

       ( ) ( ) ( )
x

2

0

u x u 0 3 y u y dy 0− − =∫   use the initial condition ( ) 10u =  

       ( ) ( )
x

2

0

u x 1 3 y u y dy= + ∫    is a Volterra equation with ( ) 2K x, y y=  

 
 
2.  Reduction of the Volterra integral equation to IVP 
 
       Recall the Liebnitz rule for differentiation of expressions with integrals: 
 

       ( )
( )

( )

∫
xb

xa

dyy,xg
dx
d  

( )
( )

( )

( ) ( ) ( ) ( )b x

a x

g x, y db x da x
dy g x,b x g x,a x

x dx dx
∂

= + −      ∂∫  

 
       In particularly,  
 

       ( )∫
x

0

dyyg
dx
d  ( )xg=  

 

       ( )∫
x

0

dyy,xg
dx
d  

( ) ( )x,xgdy
x

y,xgx

0

+
∂

= ∫  

 
Reduction of the Volterra integral equation to IVP is performed by consecutive 
differentiation of the integral equation with respect to variable x  and 
substitution 0x =  for setting of the initial conditions. 

 
 
       Example 7.5  Reduce the Volterra integral equation 

           ( ) ( ) ( )∫ −+=
x

0

23 dyyuyxxxu  

           initial value problem. 
            
               substitute 0x =  to get initial condition 
 

       ( ) ( ) ( )∫ −+=
x

0

23 dyyuyxxxu   ( ) ( ) ( )
0

23

0

0

u 0 0 x y u y dy= + −∫  ( ) 00u =  
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       ( ) ( ) ( )∫ −+=′
x

0

2 dyyuyx2x3xu   ( ) ( ) ( )∫ −+=′
0

0

2 dyyuyx2300u  ( ) 00u =′  

       ( ) ( )∫+=′′
x

0

2 dyyu2x3xu    ( ) ( )∫+=′′
x

0

2 dyyu2300u   ( ) 00u =′′  

 
       ( ) ( )xu2x6xu +=′′′  
 
       Therefore, the integral equation is reduced to IVP for 3rd order ODE: 
 
       u 2u 6 x′′′ − =   ( ) 00u =  
            ( ) 00u =′  
            ( ) 00u =′′  
 
 
3.  Reduction of BVP to the Fredholm integral equation 
 
       Recall repeated integration formula: 
 

       ( ) ( ) ( ) ( )
n 3 2t t tx x

n 1
1 1 2 n 1 n

0 0 0 0 0

1f t dt dt dt dt x t f t dt
n 1 !

−
− = −

−∫ ∫ ∫ ∫ ∫  

 
 

 
       Example 7.6  Reduce the boundary value problem 
           ( ) ( ) xxyxy =+′′  ( )π,0x∈  
               ( ) 10y =  
               ( ) 1y −= ππ  
           to the Fredholm integral equation. 
 
 
       Set    ( ) ( )xuxy =′′  
 

       integrate   ( ) ( )∫∫ =′′
x

0

x

0

dttudtty  

           ( ) ( ) ( )∫=′−′
x

0

dttu0yxy  

 

       integrate   ( ) ( )[ ] ( ) 2

x

0

t

0
112

x

0
2 dtdttudt0yty

2

∫ ∫∫











=′−′  

           ( ) ( ) ( ) ( ) 2

x

0

t

0
11 dtdttux0y0yxy

2

∫ ∫











=′−−  

           ( ) ( ) ( ) ( ) ( )dttutxx0y0yxy
x

0
∫ −=′−−        repeated integration 

 
       Use the first boundary condition 

           ( ) ( ) ( ) ( )dttutxx0y1xy
x

0
∫ −+′+=  

 
In this expression, ( )0y ′  is not known.  Substitute π=x and apply the second 
boundary condition 
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    ( ) ( ) ( ) ( )dttut0y1y
0
∫ −+′+=
π

πππ  

    ( ) ( ) ( )dttut0y11
0
∫ −+′+=−
π

πππ  

Solve for ( )0y ′  

    ( ) ( ) ( )dttut1210y
0
∫ −−−=′
π

π
ππ

 

Then    

           ( )xy  ( ) ( ) ( ) ( )dttutxxdttut1211
x

00
∫∫ −+








−−−+=

π

π
ππ

 

             ( ) ( ) ( ) ( )dttutxdttutxx2x1
x

00
∫∫ −+−−−+=

π

π
ππ

 

Now substitute this expression for ( )xy  and ( ) ( )xuxy =′′  into the original 
differential equation 
 

( ) ( ) ( ) ( ) xdttutxdttutxx2x1u
x

00

=−+−−−++ ∫∫
π

π
ππ

 

( ) ( ) ( ) ( ) 0dttutxdttutxx21u
x

00

=−+−−−+ ∫∫
π

π
ππ

 

( ) ( ) ( ) ( )dttutxdttutxx21u
x

00
∫∫ −−−++−=

π

π
ππ

 

( ) ( ) ( ) ( ) ( ) ( )dttutxdttutxdttutxx21u
x

0x

x

0
∫∫∫ −−−+−++−=

π

π
π

π
ππ

 

( ) ( ) ( ) ( ) ( ) ( )dttutxdttutxdttutx1x2u
x

x

0

x

0
∫∫∫ −+








−−−+−=

π

π
π

π
ππ

 

( ) ( ) ( ) ( ) ( ) ( )dttutxdttutxdttutx1x2u
x

x

0

x

0
∫∫∫

−
+








−−−+−=

π

π
ππ

ππ
 

( ) ( ) ( ) ( ) ( )dttutxdttutxtx1x2u
x

x

0
∫∫

−
+



 −−−+−=

π

π
ππ

ππ
 

( ) ( ) ( ) ( )dttutxdttuxt1x2u
x

x

0
∫∫

−
+

−
+−=

π

π
π

π
π

π
 

 
 
It yields a Fredholm integral equation 
 

( ) ( )
0

2u x 1 K x,t u t dt
π

π
= − + ∫  

 
with a kernel  
 

( )
( )

( )







≤≤
−

≤≤
−

=
π

π
π
π
π

txtx

xt0xt

t,xK  
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7.7 Exercises 
 

1. Prove part  3) of the Theorem 7.2.   
 

2. Classify each of the following integral equations as Fredholm or Volterra 
integral equation, linear or non-linear,  homogeneous or non-homogeneous, 
identify the parameter λ  and the kernel ( )K x, y : 

           a) ( )
1

0

u x x xyu( y )dy= + ∫  

           b) ( ) ( )
x

2

0

u x 1 x x y u( y )dy= + + −∫  

           c) ( )
x

x 2

0

u x e yu ( y )dy= + ∫  

           d) ( ) ( )
1

2

0

u x x y u( y )dy= −∫  

           e) ( )
1

0

x 1 1u x 1 dy
4 x y u( y )

= +
+∫  

 
3. Reduce the following integral equation to an initial value problem 

 

           ( ) ( ) ( )
x

0

u x x y x u y dy= + −∫  

 
4. Find the equivalent Volterra integral equation to the following initial value 
problem 

  
           ( ) ( )y x y x cos x′′ + =     ( )y 0 0=  ( )y 0 1′ =  
 
 

5. Derive the equivalent Fredholm integral equation for the following 
boundary value problem 

 
           y y x′′ + =  ( )x 0,1∈     ( )y 0 1=  ( )y 1 0=  
 
 

6. Solve the following integral equations by using the successive 
approximation method and the resolvent method: 

 

           a) ( ) ( )
1

0

u x x xyu y dyλ= + ∫  

           b) ( ) ( )
2

0

1u x x cos xu y dy
4

π

= + ∫  

 
7. Solve the following integral equation by using the successive 
approximations method 

 

           ( ) ( ) ( )
x

0

u x 1 y x u y dy= − −∫  
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8. Solve the following integral equations: 
 

            a) ( ) ( ) ( )
x

0

u x sin 2x u x s sin s ds= + −∫  

            b) ( ) ( )
x

2 as

0

u x x u x s e ds−′= + −∫   ( )u 0 0=   

 
9. Using mathematical induction prove identity for iterated kernel (7.5 2): 
 

            ( )y,xK n  ( ) ( ) ydy,yKy,xK 1n
G

′′′= −∫  

 
10. Using mathematical induction verify the following estimate for iterated 
kernels (7.5 2): 

 
            ( ) ( ) 1nn

n abMy,xK −−≤  
 

11. Verify result of Example 7.4 by solving both IVP and derived integral 
equation. 
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  Stefan Banach (1892 -1945)               Scottish Café        Lvov 
 
The Scottish café in Lvov (Ukraine) was a meeting place for many mathematicians including Banach, Steinhaus, 
Ulam, Mazur, Kac, Schauder, Kaczmarz and others. Problems were written in a book kept by the landlord.  A 
collection of these problems appeared later as the Scottish Book.  R D Mauldin, The Scottish Book, Mathematics 
from the Scottish Café (1981) contains the problems as well as some solutions and commentaries. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
Ivar Fredholm (1866 – 1927)  

 
Fredholm is best remembered for his work on integral equations and spectral theory.  

Find out more at: http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Fredholm.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vito Volterra (1860 - 1940)  

Volterra published papers on partial differential equations, particularly the equation of cylindrical 
waves. His most famous work was done on integral equations. He published many papers on what is 

now called 'an integral equation of Volterra type'. 

Find out more at:  http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Volterra.html  

 




